Forgot password?
 Register account
View 2193|Reply 3

[不等式] 近期在学习不等式,来一个高考有关的不等式

[Copy link]

414

Threads

905

Posts

110K

Credits

Credits
10998

Show all posts

lemondian Posted 2017-7-28 14:14 |Read mode
Last edited by hbghlyj 2025-3-13 04:3623.(2017•新课标 II)已知 $a>0, b>0, a^3+b^3=2$ ,证明:
(1)$(a+b)\left(a^5+b^5\right) \geqslant 4$ ;
(2)$a+b \leqslant 2$ .
看看有没有多种做法?
特别是第2小问的多种做法

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2017-7-28 14:50

414

Threads

905

Posts

110K

Credits

Credits
10998

Show all posts

 Author| lemondian Posted 2017-7-28 19:45
Last edited by lemondian 2017-7-28 20:01回复 2# kuing


    谢谢Kuing!,我是用反证法来证的

414

Threads

905

Posts

110K

Credits

Credits
10998

Show all posts

 Author| lemondian Posted 2017-7-28 19:47
Last edited by hbghlyj 2025-5-12 17:58换元,a^3=1+t,b^3=1-t,t∈R,利用导数最大值。

这个方法,我试了一下,好象总有点写不好,Kuing帮下忙?

下面构造函数是否正确?
由 $a^3+b^3=2$,设 $a^3=1+t, b^3=1-t(-1<t<1)$,令 $f(t)=(1+t)^{\frac{1}{3}}+(1-t)^{\frac{1}{3}}$,则 $f'(t)=\frac{1}{3}\left[\frac{1}{(1+t)^{\frac{2}{3}}}-\frac{1}{(1-t)^{\frac{2}{3}}}\right]$,易知当 $t \in(-1,0)$ 时,$f(t)$ 单调递增;当 $t \in(0,1), f(t)$ 单调递减。所以 $f(t)$ 的最大值为 $f(0)=2$ ,故有 $f(t)=(1+t)^{\frac{1}{3}}+(1-t)^{\frac{1}{3}}=a+b \leq 2$ ,当且仅当 $t=0$ ,即 $a=b=1$ 时,等号成立。

Mobile version|Discuz Math Forum

2025-6-5 02:06 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit