Forgot password
 Register account
View 1926|Reply 6

[不等式] 两对数比较大小

[Copy link]

281

Threads

550

Posts

2

Reputation

Show all posts

力工 posted 2017-9-4 21:08 |Read mode
不用计算器,如何算这道题.
比较大小 :$\log_{3}4,log_{5}6$
我有一种做法,但不满意。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2017-9-4 21:33
$\log_34>\log_45>\log_56$
参见《撸题集》第 564 页题目 4.8.16

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2017-9-5 07:20
回复 1# 力工

依照10楼
\[\log_34>\frac 7{10}\log_36>\log_53\log_36=\log_56.\]

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2017-9-5 08:03
Last edited by isee 2017-9-5 16:01看了《撸题集》第 564 页题目 4.8.16 中的链接,其实用均值也不错对大于1的自然数$n$:

\[\sqrt{\ln n\ln(n+2)}<\frac{\ln n+\ln(n+2)}2=\frac{\ln (n^2+2n)}2<\frac{\ln (n^2+2n+1)}2=\ln(n+1).\]

7

Threads

578

Posts

9

Reputation

Show all posts

游客 posted 2017-9-5 13:49
Last edited by 游客 2017-9-5 18:45 未命名.PNG
要理论证明的话,可以证明
函数f(x)=m^x-n^x在(0,+∞)上是增函数,
(m>n>1)

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2017-9-5 13:59
回复 4# isee

竟然有个全角括号

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2017-9-5 15:21
Last edited by isee 2017-9-5 16:05哈哈,错得离谱,有电脑时改下。。
===

4楼已经更正,多谢指正。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:00 GMT+8

Powered by Discuz!

Processed in 0.017899 seconds, 49 queries