Forgot password?
 Register account
View 984|Reply 5

[几何] 向量数量积的绝对值之和最大值

[Copy link]

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2021-6-1 15:05 |Read mode
$ |\vv{a} |=1, |\vv{b} |=2,$对任意单位向量$ \vv{e} $均有,$|\vv{a}\cdot \vv{e}|+|\vv{b}\cdot \vv{e}|\leqslant \sqrt{6}$,则$ \vv{a} \cdot \vv{b}$的最大值_____。请教!谢谢。

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2021-6-1 15:13
Last edited by hbghlyj 2021-6-1 15:25tpp
法1:利用绝对值三角不等式可得$\sqrt6\ge|\vv a⋅\vv e|+|\vv b⋅\vv e|\ge|\vv a⋅\vv e+\vv b⋅\vv e|=|(\vv a+\vv b)⋅\vv e|$,即对任意单位向量$\vv e$有$|(\vv a+\vv b)⋅\vv e|\le\sqrt 6$,所以$|\vv a+\vv b|\le\sqrt 6$平方后$|\vv a|^2+|\vv b|^2+2\vv a⋅\vv b\le6$,故$\vv a⋅\vv b\le\frac12$.
下面证明$\vv a⋅\vv b$可以取得$\frac12$.
(1)若$|\vv a⋅\vv e|+|\vv b⋅\vv e|=|\vv a⋅\vv e+\vv b⋅\vv e|$,则显然满足条件;
(2)若$|\vv a⋅\vv e|+|\vv b⋅\vv e|=|\vv a⋅\vv e-\vv b⋅\vv e|$,此时$|\vv a-\vv b|^2=|\vv a|^2+|\vv b|^2-2\vv a⋅\vv b=5-1=4,$此时$|\vv a-\vv b=2$,于是$|\vv a⋅\vv e|+|\vv b⋅\vv e|=|\vv a⋅\vv e-\vv b⋅\vv e|\le 2$.


法2:由于任意单位向量$\vv e$,可设$\vv e=\frac{\vv a+\vv b}{|\vv a+\vv b|}$,则$\sqrt6\ge|\vv a⋅\vv e|+|\vv b⋅\vv e|=|\vv a+\vv b|$,后面和法1一样.

法3:设$\vv{OA}=\vv a,\vv{OB}=\vv b,\vv{OC}=\vv e$,则$\vv{OD}=\vv a+\vv b,\vv{BA}=\vv a-\vv b$,
$|\vv a⋅\vv e|+|\vv b⋅\vv e|=|\vv{OA_1}|+|\vv{A_1B_1}|=|\vv{OB_1}|\le|\vv{OD}|$,
由题设当且仅当$\vv e$与$\vv{OD}$同向时,等号成立,此时$(\vv a+\vv b)^2$取得最大值6.
由于$(|\vv a|+|\vv b|)^2+(|\vv a|-|\vv b|)^2=2(|\vv a|^2+|\vv b|^2)=1$,于是$(\vv a-\vv b)^2$取得最大值4,则$\vv a⋅\vv b=\frac{|\vv a+\vv b|^2-|\vv a-\vv b|^2}4\le\frac12$,$\vv a⋅\vv b$的最大值是$\frac12$.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-6-1 15:17
高考题,2016 浙江理数:forum.php?mod=viewthread&tid=4103

类似的改编题:forum.php?mod=viewthread&tid=6332

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

 Author| 敬畏数学 Posted 2021-6-1 15:49
能用图形吗?这么优美的式子!!!

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

 Author| 敬畏数学 Posted 2021-6-1 16:25
法3有点意思,但有点问题。。。。

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2022-2-18 16:00
Last edited by 走走看看 2022-2-18 16:13回复 5# 敬畏数学

法三:
把“=1”改成“=10”,把“取得最大值4”改为“取得最小值4”即可。

Mobile version|Discuz Math Forum

2025-5-31 10:51 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit