Forgot password?
 Register account
View 299|Reply 2

[函数] 2022年新高考全国2卷第8题 抽象函数求值

[Copy link]

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2022-6-13 18:03 |Read mode
Last edited by hbghlyj 2025-3-13 04:12和新高考全国1卷完全不同
===

题:已知函数$(x)$的定义域为$\mathbb R$且$f(x+y)+f(x-y)=f(x)f(y)$,$f(1)=1$,则$\sum_{1}^{22}f(k)=$

A. -3

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2022-6-13 22:35
考场上抢时间可以耍赖...
比如,一眼看出,余弦或者双曲余弦类的函数满足条件
试一下就可以知道了,直接令
\[f(x)=2\cos(\frac{\pi x}{3})\]
即可

Rate

Number of participants 1威望 +1 Collapse Reason
isee + 1

View Rating Log

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2022-6-14 00:20
交换 `x`, `y` 知 `f` 是偶函数,令 `x=1`, `y=0` 得 `f(0)=2`,令 `y=1` 得 `f(x+1)+f(x-1)=f(x)`,进而 `f(x+3)=f(x+2)-f(x+1)=-f(x)`,可见 `f(k)` 连续 6 项之和为零,那么如果对所求式补上 `f(-1)` 和 `f(0)` 的话就是连续 24 项,因此所求式 `= -f(-1)-f(0) = -3`。

Rate

Number of participants 1威望 +1 Collapse Reason
isee + 1

View Rating Log

Mobile version|Discuz Math Forum

2025-6-4 17:06 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit