Forgot password?
 Register account
View 241|Reply 3

[几何] 一个圆内弦长比例问题,求范围

[Copy link]

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2023-5-14 20:41 |Read mode
作业题:点$P$是单位圆$O$的内一点,且$OP=x>0$,作圆$O$过点P的弦$AB$,若$AP=2PB$,求$x$的范围。
答案是$\frac{1}{3}\leqslant x\leqslant<1$.
但我算错了,过程如下,请问错在哪?正确思路是什么?
$作过OP的直径,由相交弦定理,有PA\cdot PB=(1+x)(1-x),2PB^2=1-x^2>0$,
由垂径定理,$O$到$AB$的距离为$\sqrt{1-(\frac{3BP}{2})^2}$,
根据面积公式,有$\triangle OPA$的面积
$S=\frac{1}{2}AP\cdot\sqrt{1-(\frac{3BP}{2})^2}$
$= \frac{1}{2}OP\cdot OAsin\angle AOP\leqslant\frac{1}{2}OP\cdot OA $
$x\geqslant 2BP\cdot \sqrt{1-(\frac{3BP}{2})^2}$恒成立,求得右边的最大值为$\frac{2}{3}$.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2023-5-14 21:47
`x\geqslant 2BP\cdot \sqrt{1-(\frac{3BP}{2})^2}` 这条式子本身就对任意 `x\in(0,1)` 恒成立(不信你把函数图像画出来瞧瞧),并不能解出 `x` 的范围。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2023-5-14 21:53
正确的思路很简单啊,易证 `PA`, `PB\in[1-x,1+x]`,有
\[\frac{1-x}{1+x}\leqslant\frac{PA}{PB}\leqslant\frac{1+x}{1-x},\]
当 `AB` 为直径时取等号,所以要满足题意只需
\[\frac{1+x}{1-x}\geqslant2\iff\frac13\leqslant x<1.\]

Comment

谢谢!  Posted 2023-5-14 22:20

Rate

Number of participants 1威望 +1 Collapse Reason
力工 + 1 很有用!

View Rating Log

Mobile version|Discuz Math Forum

2025-5-31 10:44 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit