Forgot password?
 Register account
View 2545|Reply 7

[几何] 解析几何试题

[Copy link]

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

aishuxue Posted 2014-3-26 18:34 |Read mode
Last edited by hbghlyj 2025-4-8 06:08椭圆方程为 $\frac{x^2}{2}+y^2=1$,$F$ 为左焦点,$P, Q$ 在椭圆上,且 $\overrightarrow{F P}=\lambda \overrightarrow{Q F}$,且 $\lambda \in\left[\frac{1}{2}, 2\right]$,求 $\overrightarrow{O P} \cdot \overrightarrow{O Q}$ 的最大值.

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-3-29 17:59
不晓得要写好多过程哟,

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2014-3-30 02:19
回复 1# aishuxue


最烦这些烂向量了,PQ过F不就完了,硬是要弄个向量出来,而且还没事给个范围,最后发现根本没用........

易证$PQ$过$F(-1,0)$,有直线参数方程:
\[\begin{cases} x=-1+t\cos(\theta) \\ y=t\sin(\theta)\end{cases}\]
于是有
\[\frac{(-1+t\cos(\theta))^2}{2}+(t\sin(\theta))^2=1\]
\[(\frac{\cos^2(\theta)}{2}+\sin^2(\theta))t^2-\cos(\theta)t-\frac{1}{2}=0\]
\[t_1+t_2=\frac{\cos(\theta)}{(\frac{\cos^2(\theta)}{2}+\sin^2(\theta))}=\frac{4\cos(\theta)}{\cos(2\theta)-3}\]
\[t_1t_2=\frac{2}{\cos(2\theta)-3}\]
而后有
\[\overrightarrow{OP}·\overrightarrow{OQ}=(-1+t_1\cos(\theta))(-1+t_2\cos(\theta))+t_1\sin(\theta)t_2\sin(\theta)=t_1t_2-(t_1+t_2)\cos(\theta)+1\]
带入上面的化简得到
\[\overrightarrow{OP}·\overrightarrow{OQ}=3-\frac{10}{3-\cos(2\theta)}\]
当$\theta=\frac{\pi}{2}$时有最大值$\frac{1}{2}$

29

Threads

70

Posts

647

Credits

Credits
647

Show all posts

转化与化归 Posted 2014-3-30 13:30
Last edited by hbghlyj 2025-4-8 05:50标准答案发上来供参考
1.jpg
2.jpg
$\overrightarrow{O P} \cdot \overrightarrow{O Q}$ 的最大值为 $\frac{1}{2}$ ,此时 $\lambda=1 \in\left[\frac{1}{2}, 2\right]$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-3-30 14:27
向量+不等式

设 $\abs{FP}=p$, $\abs{FQ}=q$,直线 $PQ$ 的倾斜角为 $\theta$,由对称性,不妨设 $\theta\leqslant90\du$,此时 $p\geqslant q$。

我们有熟知的结论
\[\frac1p+\frac1q=\frac{2a}{b^2},\]
于是
\begin{align*}
\vv{OP}\cdot\vv{OQ}&=\bigl(\vv{OF}+\vv{FP}\bigr)\cdot\bigl(\vv{OF}+\vv{FQ}\bigr) \\
& =\vv{OF}^2-\vv{FO}\cdot\bigl(\vv{FP}+\vv{FQ}\bigr)+\vv{FP}\cdot\vv{FQ} \\
& =c^2-c(p-q)\cos \theta -pq \\
& \leqslant c^2-pq \\
& \leqslant c^2-\left( \frac2{\frac1p+\frac1q} \right)^2 \\
& =c^2-\frac{b^4}{a^2},
\end{align*}
当且仅当 $\theta=90\du$ 即 $p=q$ 时取等号。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-3-30 15:07
楼上的方法结合极坐标也可以推出 3# 的结果。

利用极坐标,易知
\[p=\frac{b^2}{a-c\cos\theta}, q=\frac{b^2}{a+c\cos\theta},\]
于是
\begin{align*}
\vv{OP}\cdot\vv{OQ}&=\bigl(\vv{OF}+\vv{FP}\bigr)\cdot\bigl(\vv{OF}+\vv{FQ}\bigr) \\
& =\vv{OF}^2-\vv{FO}\cdot\bigl(\vv{FP}+\vv{FQ}\bigr)+\vv{FP}\cdot\vv{FQ} \\
& =c^2-c(p-q)\cos \theta -pq \\
& =c^2-c\left( \frac{b^2}{a-c\cos\theta}-\frac{b^2}{a+c\cos\theta} \right)\cos\theta -\frac{b^2}{a-c\cos\theta}\cdot\frac{b^2}{a+c\cos\theta} \\
& =c^2-\frac{2b^2c^2\cos^2\theta+b^4}{a^2-c^2\cos^2\theta} \\
& =c^2+2b^2-\frac{2a^2b^2+b^4}{a^2-c^2\cos^2\theta} \\
& =a^2+b^2-\frac{4a^2b^2+2b^4}{a^2+b^2-(a^2-b^2)\cos2\theta}.
\end{align*}

53

Threads

308

Posts

2026

Credits

Credits
2026

Show all posts

踏歌而来 Posted 2014-4-7 16:00
回复 5# kuing

$请问pq≥(\frac{2}{\frac{1}{p}+\frac{1}{q}})^2是什么公式?$
一开始以为是权方和,但我找了一下资料,好像不是。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-4-7 16:10
回复 7# 踏歌而来

几何平均 >= 调和平均

当然,你可以去分母,变成最简单的均值,随意……

Mobile version|Discuz Math Forum

2025-5-31 10:36 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit