Forgot password?
 Register account
View 5359|Reply 17

[几何] 单位圆上的两动点

[Copy link]

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2015-5-4 12:41 |Read mode
Last edited by hbghlyj 2025-3-21 23:44

如图,AB是一单位圆的直径,C、D为单位圆上的两动点,求$\vv{AC}·\vv{BD}$的取值范围________.

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

 Author| realnumber Posted 2015-5-4 13:19
Last edited by realnumber 2015-5-4 13:39最小值显然为-4,此时C、B重合,A、D重合.
以下求最大值.
设以圆心为原点,AB为x轴,建立直角坐标系,$C(\cos{\alpha},\sin{\alpha}),D(\cos{\beta},\sin{\beta}),A(-1,0),B(1,0)$.
考虑到对称性,以及$\vv{AC},\vv{BD}$夹角为锐角,不妨设$0\le\beta\le\alpha\le\pi$
那么
\[\vv{AC}·\vv{BD}=(\cos{\alpha}+1,\sin{\alpha})·(\cos{\beta}-1,\sin{\beta})\]
\[=(1+\cos{\alpha})\cos{\beta}+\sin{\alpha}\sin{\beta}-\cos{\alpha}-1\]
\[\le\sqrt{{(1+\cos{\alpha})}^2+{\sin{\alpha}}^2}-\cos{\alpha}-1\]
设$\sqrt{1+\cos{\alpha}}=t$
即\[\vv{AC}·\vv{BD}=\sqrt{2}t-t^2\]
经验证在$t=\frac{\sqrt{2}}{2}$,即$\alpha=\frac{2\pi}{3},\beta=\frac{\pi}{3}$时取最大值.

但本解法用辅助角公式,似乎超纲,虽然也可以用向量解释.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-5-4 13:38
设 $\angle COD=2\theta$,其中 $\theta\in[0,\pi/2]$,则
\begin{align*}
\vv{AC}\cdot\vv{BD}
&=\bigl(\vv{AO}+\vv{OC}\bigr)\cdot\bigl(\vv{BO}+\vv{OD}\bigr)\\
&=\vv{AO}\cdot\vv{BO}+\vv{AO}\cdot\vv{OD}+\vv{BO}\cdot\vv{OC}+\vv{OC}\cdot\vv{OD}\\
&=-1+\vv{AO}\cdot\vv{CD}+\cos2\theta,
\end{align*}
由于
\[-2\sin\theta=-\abs{CD}\leqslant \vv{AO}\cdot\vv{CD}\leqslant \abs{CD}=2\sin\theta,\]
所以
\[-1-2\sin\theta+\cos2\theta\leqslant \vv{AC}\cdot\vv{BD}\leqslant -1+2\sin\theta+\cos2\theta,\]
令 $t=\sin\theta\in[0,1]$,即得
\[-4\leqslant -2(t^2+t)\leqslant \vv{AC}\cdot\vv{BD}\leqslant -2(t^2-t)\leqslant \frac12,\]
当 $C$ 与 $B$ 重合且$D$ 与 $A$ 重合时 $\vv{AC}\cdot\vv{BD}=-4$,当 $\vv{AB}=2\vv{CD}$ 时 $\vv{AC}\cdot\vv{BD}=1/2$。

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

 Author| realnumber Posted 2015-5-4 13:44
谢谢k,这个好.
$\vv{AO}·\vv{CD}\le\abs{CD}$不容易看到啊.

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

 Author| realnumber Posted 2015-5-4 15:32
同事王的思路:
QQ图片20150504152841王.png
也就是说过D作$BC_0$的垂线是原单位圆的切线。同时过$C_0$作BD垂线也是如此。否则可以证明“还有更大的”,反证法可以操作。
而$DC_0$平行AB且$∠DBC_0=\frac{\pi}{3}$符合要求。
好象也可以,不清楚有没漏洞,怎么说明“$DC_0$平行AB且$∠DBC_0=\pi/3$”情况是唯一的?

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

 Author| realnumber Posted 2015-5-4 15:38
何老师发的
QQ图片20150504153651何.png

29

Threads

70

Posts

647

Credits

Credits
647

Show all posts

转化与化归 Posted 2015-5-4 16:32
1.png
2.png

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-5-4 16:37
回复 7# 转化与化归

nice

0

Threads

3

Posts

18

Credits

Credits
18

Show all posts

椰乡故有情 Posted 2015-5-4 19:35
回复 7# 转化与化归


    Nice

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2015-5-4 22:21

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-5-4 23:03
回复 10# 其妙

别“好像”了,有就有嘛

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2015-5-5 03:53
设其值为$ M $
当$ AC,BD $平行且共线时,$ M_{mix}=-4 $。
如图:设$ D $为圆上任一点,$ C $点必然在劣弧$ AD $上$ M $值方为正值,此时$ AC $在$ BD $上的投影$ DE $取得最大值当且仅当$ C $为劣弧$ AD $的中点时。有\[ M_{max}=CF\cdot DB=\tan\alpha \cdot \sin2\alpha \cdot 2\cos2\alpha \]\[=4\sin^2\alpha \cdot \cos2\alpha =2\cdot 2\sin^2\alpha \cdot (1-2\sin^2\alpha ) \leqslant \dfrac{1}{2}\]
(其中$ 0\leqslant \alpha\leqslant 45\du $,取等当且仅当$ 2\sin^2\alpha =1-2\sin^2\alpha  $即$ \alpha =30\du  $时取得  )
211.png

1

Threads

81

Posts

561

Credits

Credits
561

Show all posts

活着&存在 Posted 2015-5-5 08:37
未命名.jpg

411

Threads

1623

Posts

110K

Credits

Credits
11833

Show all posts

abababa Posted 2015-5-5 10:01
回复 14# 活着&存在
这个真明了,学习了,谢谢。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-5-5 12:48
回复 15# abababa

这个跟3#类似,3#的过程相当于 CD 确定时要求夹角 0 或 pi,只不过我用了代数式来表达它

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

guanmo1 Posted 2015-5-10 17:46
回复 4# realnumber


    平面向量数量积的几何意义易见。

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

guanmo1 Posted 2020-3-19 12:52

向量数量积最大值

Last edited by hbghlyj 2025-5-13 04:38已知 $C, D$ 是以 $A B$ 为直径的圆 $O$ 上的动点,且 $A B=4$ ,则 $\overrightarrow{A C} \cdot \overrightarrow{B D}$ 的最大值是( )

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2022-4-28 13:01
Last edited by hbghlyj 2025-5-4 00:38源自知乎提问,最原始的问题

今天算是真的把此题解了

:已知点 $A,B$ 分别在曲线 $(x-2)^2+(y-2)^2=8$ 和 $(x+2)^2+(y+2)^2=8$ 上,若 $O$ 为坐标原点,则 $\overrightarrow {OA}\cdot \overrightarrow {OB}$ 的最大值为_______.

如图 1,易知题中两等圆外切于原点 $O$,延长 $BO$ 交另一圆于点 $C$,则在 $\triangle AOC$ 中有 $\overrightarrow {AO}+\overrightarrow {OC}=\overrightarrow {AC},$ 平方即有 $2\overrightarrow {AO}\cdot \overrightarrow {OC}=AC^2-AO^2-OC^2.$

另一方面在 $\triangle AOC$ 中由正弦定理有 $AC=2R\cdot\sin O$,$AO=2R\cdot \sin C$,$OC=2R\cdot \sin A.$



图 1 OB 直线交另一圆于另一点 C


于是 \begin{align*} \overrightarrow {AO}\cdot \overrightarrow {OC}=2R^2(\sin^2O-\sin^2C-\sin^2A). \end{align*}

注意到恒等式 $\sin(x+y)\sin(x-y)=\sin^2x-\sin^2y$ (亦称正弦平方差公式)则有

\begin{align*} &\quad\overrightarrow {OA}\cdot \overrightarrow {OB}=\overrightarrow {AO}\cdot \overrightarrow {OC}\\[1em] &=2R^2(\sin^2O-\sin^2C-\sin^2A)\\[1em] &=2R^2(\sin(O+C)\sin(O-C)-\sin^2A)\\[1em] &=2R^2(\sin A\sin(O-C)-\sin^2A)\\[1em] &=2R^2\sin A\cdot(\sin(O-C)-\sin A)\\[1em] {}\xlongequal{\small \text{AG-GM}}&\leqslant2R^2\left(\frac {\sin A+\sin(O-C)-\sin A}2\right)^2\\[1em] &=\frac {R^2}2\sin^2(O-C)\\[1em] &\leqslant \frac {R^2}2=4. \end{align*}

两次等号成立时 $A=\frac \pi6,$ $O=\frac {2\pi}3,$ $C=\frac \pi6$ 亦即有正 $\triangle AOB.$


===
此解结果为一般结论
=====

不过,当两圆不是等圆时,结果是$R_1R_2/2$,这个提一下~

Mobile version|Discuz Math Forum

2025-5-31 10:35 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit