|
Last edited by hbghlyj 2025-5-10 17:43$P$ 为 $\triangle A B C$ 内部一点,且满足 $|P B|=2|P A|=2, \angle A P B=\frac{5 \pi}{6}$,且 $2 \overrightarrow{P A}+3 \overrightarrow{P B}+4 \overrightarrow{P C}=\overrightarrow{0}$,则 $\triangle A B C$ 的面积为
作 $P A'=2 P A, P B'=3 P B, P C'=4 P C$
则 $\overrightarrow{P A'}+\overrightarrow{P B'}+\overrightarrow{P C'}=\overrightarrow{0}$
$\therefore P$ 是 $\triangle A' B' C'$ 的重心
$\therefore$ 可记 $S_{\triangle P A' B'}=S_{\triangle P B' C'}=S_{\triangle P B' C'}=k$
$\because \frac{S_{\triangle P A B}}{S_{\triangle P A' B'}}=\frac{\frac{1}{2} P A \cdot P B \cdot \sin \angle A P B}{\frac{1}{2} P A' \cdot P B' \cdot \sin \angle A P B}=\frac{1}{6} \quad \therefore S_{\triangle P A B}=\frac{1}{6} k$
同理$S_{\triangle P B C}=\frac{1}{12} k$. $S_{\triangle P A C}=\frac{1}{8} k$
\[
\begin{aligned}
& \therefore \frac{S_{\triangle A B C}}{S_{\triangle P A B}}=\frac{\frac{1}{6} k+\frac{1}{12} k+\frac{1}{8} k}{\frac{1}{6} k}=\frac{11}{4} \\
& \therefore S_{\triangle A B C}=\frac{11}{4} S_{\triangle P A B}=\frac{11}{4} \times \frac{1}{2} \times 1 \times 2 \times \sin \frac{5 \pi}{6}=\frac{11}{8}
\end{aligned}
\]答案为 $\frac{9}{8}$ 错在哪里? |
|