Forgot password
 Register account
View 1722|Reply 4

[不等式] 一道向量与最值的试题

[Copy link]

92

Threads

89

Posts

0

Reputation

Show all posts

aishuxue posted 2018-4-8 12:03 |Read mode
Last edited by hbghlyj 2025-4-8 05:13已知 $a, b, c$ 分别为 $\triangle A B C$ 内角 $A, B, C$ 的对边.若 $\overrightarrow{A B} \cdot \overrightarrow{A C}=|\overrightarrow{B A}+\overrightarrow{B C}|=2$ ,则 $b^2-a b$ 的最小值为 $\qquad$ .

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2018-4-8 12:39
没什么难度啊,条件化为
\[\frac {b^2+c^2-a^2}2=\sqrt {2c^2+2a^2-b^2}=2,\]

\[b^2+c^2-a^2=2c^2+2a^2-b^2=4,\]
消 `c` 得
\[3b^2-4a^2=4,\]
所以
\[b^2-ab\geqslant b^2-\left( a^2+\frac {b^2}4 \right)=\frac {3b^2-4a^2}4=1,\]
当 `a=\sqrt{1/2}`, `b=\sqrt2`, `c=\sqrt{5/2}` 时取等。

92

Threads

89

Posts

0

Reputation

Show all posts

original poster aishuxue posted 2018-4-8 13:43
谢谢

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2018-4-11 17:37
可能楼主被那个向量的模吓坏了吧(纸老虎,中线长公式或者直接平方余弦定理亦可),二次的最值变过来变过去的,都被玩坏了。

209

Threads

949

Posts

2

Reputation

Show all posts

敬畏数学 posted 2018-4-12 10:24
看到这个东西,五味杂陈,积木式的问题堆积,其实全是套路。最后没有忘记套一下齐次!

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:39 GMT+8

Powered by Discuz!

Processed in 0.018998 seconds, 44 queries