Forgot password?
 Register account
View 1887|Reply 3

[不等式] 根式不等式$\frac{ab}{\sqrt{a^2+a+1}}$

[Copy link]

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

tommywong Posted 2019-7-10 19:54 |Read mode
$a,b,c>0,~ a+b+c=1$
證明 $\displaystyle \sum_{cyc}{\frac{ab}{\sqrt{a^2+a+1}}}\leq{\frac{1}{\sqrt{13}}}$
现充已死,エロ当立。
维基用户页:https://zh.wikipedia.org/wiki/User:Tttfffkkk
Notable algebra methods:https://artofproblemsolving.com/community/c728438
《方幂和及其推广和式》 数学学习与研究2016.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-7-10 23:36
依然是切线法
\[\left(\frac{63x+5}{26\sqrt{13}}\right)^2-\left(\frac x{\sqrt{x^2+x+1}}\right)^2=\frac{(3x-1)^2(441x^2+805x+25)}{8788(x^2+x+1)}\geqslant0,\]故
\begin{align*}
\sum\frac{ab}{\sqrt{a^2+a+1}}&\leqslant\sum\frac{(63a+5)b}{26\sqrt{13}}\\
&=\frac{63}{26\sqrt{13}}(ab+bc+ca)+\frac5{26\sqrt{13}}\\
&\leqslant\frac{21}{26\sqrt{13}}(a+b+c)^2+\frac5{26\sqrt{13}}\\
&=\frac1{\sqrt{13}}.
\end{align*}

Rate

Number of participants 1威望 +1 Collapse Reason
tommywong + 1 郭子伟牛逼!

View Rating Log

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

 Author| tommywong Posted 2019-7-12 18:45
轉帖 原發問者teomihai用Jensen做

if $\displaystyle f(x)= \frac{x}{\sqrt{x^2+x+1}}$ then $f(x)$ is concave and increasing
Then $\displaystyle \frac{bf(a)+cf(b)+af(c)}{a+b+c} \leq f(\frac{ab+bc+ca}{a+b+c}) \leq f( \frac{a+b+c}{3})$

54

Threads

160

Posts

1234

Credits

Credits
1234

Show all posts

血狼王 Posted 2019-7-13 23:26
轉帖 原發問者teomihai用Jensen做

if $\displaystyle f(x)= \frac{x}{\sqrt{x^2+x+1}}$ then $f(x)$ is co ...
tommywong 发表于 2019-7-12 18:45

其实这个方法是我教他的……参见:
artofproblemsolving.com/community/c1h1870961
(Grotex是我)

Mobile version|Discuz Math Forum

2025-5-31 11:02 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit