Forgot password?
 Register account
View 1756|Reply 5

[不等式] 证明$\sqrt a+\sqrt b+\sqrt c\geqslant ab+bc+ca$

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2019-7-17 10:51 |Read mode
差不多看了一上午的不等式,头晕眼花,来个简单的不等式,转换下”心情“。

题:若$a,b,c$为正实数,且$a+b+c=3$,求证:$\sqrt a+\sqrt b+\sqrt c\geqslant ab+bc+ca$.

0

Threads

28

Posts

348

Credits

Credits
348

Show all posts

删广告专用 Posted 2019-7-17 12:08
`\sqrt[3]a+\sqrt[3]b+\sqrt[3]c\geqslant ab+bc+ca` [阴险]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-7-23 14:24
没人鸟吗,好吧,见《数学空间》2011 年第 3 期 P.27~28 例 3.2.2(楼主的)及 P.29~30 例 3.2.4(楼上的)。

19

Threads

44

Posts

409

Credits

Credits
409
QQ

Show all posts

O-17 Posted 2023-3-24 23:51
比较暴力的方法...
齐次化, 等价于证
$$
\left(\sum a\right)^2\left(\sum a^2\right)^3\geqslant\left(\sum a^2b^2\right)^2
$$
注意到
\begin{align*}
&\left(\sum a\right)^2\left(\sum a^2\right)^3-\left(\sum a^2b^2\right)^2\\
&=\frac12\sum(a-b)^8+6\sum ab(a-b)^6+26\sum a^2b^2(a-b)^4+48\sum a^3b^3(a-b)^2\\
&~~~~~+\sum c^4(a-b)^4+2\left(\sum ab\right)\left(\sum ab(a-c)^2(b-c)^2\right)\\
&~~~~~+\left(\prod a\right)\left(14\sum c^3(a-b)^2+2\sum a^3(a-b)(a-c)+6\sum c(a^2+ab+b^2)(a-b)^2\right)\\
&\geqslant0.~\square
\end{align*}
配的可能不太好, 毕竟是八次, 然后又很松, 所以没怎么动脑子, 就看到什么消什么了...

Comment

然后又很松,所以就是大炮打蚊子😅  Posted 2023-3-25 00:14
是这样的...毕竟不会其它做法了  Posted 2023-3-25 00:45

Mobile version|Discuz Math Forum

2025-5-31 11:18 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit