Forgot password
 Register account
View 1980|Reply 3

[不等式] 根式不等式√a/(b+2)

[Copy link]

81

Threads

434

Posts

12

Reputation

Show all posts

tommywong posted 2019-9-21 20:39 |Read mode
已知$a>0,b>0$,求證

$\displaystyle \sqrt{\frac{a}{b+2}}
+\sqrt{\frac{b}{a+2}}\ge 2\sqrt{\frac{ab}{2ab+1}}$
现充已死,エロ当立。
维基用户页:https://zh.wikipedia.org/wiki/User:Tttfffkkk
Notable algebra methods:https://artofproblemsolving.com/community/c728438
《方幂和及其推广和式》 数学学习与研究2016.

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2019-9-22 03:20

\[\frac1{\sqrt{(a+1)^2-1}}+\frac1{\sqrt{(b+1)^2-1}}\geqslant\frac2{\sqrt{2ab+1}},\]可以证明 `1/\sqrt{(e^x+1)^2-1}` 为下凸函数,从而
\[
\LHS\geqslant\frac2{\sqrt{\bigl(\sqrt{ab}+1\bigr)^2-1}}=\frac2{\sqrt{ab+2\sqrt{ab}}}\geqslant\RHS.
\]

Rate

Number of participants 1威望 +1 Collapse Reason
tommywong + 1 郭子偉牛逼

View Rating Log

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2019-9-22 16:17
回复 2# kuing


    `1/\sqrt{(e^x+1)^2-1}` 为什么不是`1/\sqrt{(x+1)^2-1}`?

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2019-9-22 16:57
回复 3# isee

由 `1/\sqrt{(x+1)^2-1}` 下凸只能得出
\[LHS\geqslant\frac2{\sqrt{\bigl(\frac{a+b}2+1\bigr)^2-1}},\]用它无法证明原不等式;

而由 `1/\sqrt{(e^x+1)^2-1}` 下凸则有
\[\frac1{\sqrt{(e^x+1)^2-1}}+\frac1{\sqrt{(e^y+1)^2-1}}\geqslant\frac2{\sqrt{(e^{(x+y)/2}+1)^2-1}}=\frac2{\sqrt{\bigl(\sqrt{e^xe^y}+1\bigr)^2-1}},\]也就是
\[LHS\geqslant\frac2{\sqrt{\bigl(\sqrt{ab}+1\bigr)^2-1}},\]很明显,它比前者强。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:01 GMT+8

Powered by Discuz!

Processed in 0.018911 seconds, 47 queries