Forgot password?
 Register account
View 347|Reply 2

[不等式] 二元函数min(⋯)的最大值

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-4-3 20:40 |Read mode
如何证明$\min\left\{\begin{array}{l}
1 \\
1-\cos (2 x) \\
1+\cos (2 x) \\
1-\cos (2 x-2 y) \\
1+\cos (2 x-2 y) \\
1-\cos (2 y) \\
1+\cos (2 y) \\
1-\sin (2 x) \\
1+\sin (2 x) \\
1-\sin (2 y) \\
1+\sin (2 y) \\
\end{array}\right\}$的最大值为$1 - \frac1{\sqrt2}$ ?
  1. f[x_, y_] =
  2.   Min[1, 1 - Cos[2 x], 1 + Cos[2 x], 1 - Cos[2 x - 2 y], 1 + Cos[2 x - 2 y],
  3.    1 - Cos[2 y], 1 + Cos[2 y], 1 - Sin[2 x], 1 + Sin[2 x], 1 - Sin[2 y],
  4.    1 + Sin[2 y]];
  5. Maximize[f[x,y],{x,y}]
Copy the Code
Maximize无法找到最大值,因为函数不平滑。
使用NMaximize结果为{0.292893, {x -> -1.1781, y -> -0.392699}}

函数对称性
  1. f[x + π/2, y] == f[x, y] // FullSimplify
  2. (*    True    *)
  3. f[x, y + π/2] == f[x, y] // FullSimplify
  4. (*    True    *)
  5. f[π/2 - x, π/2 - y] == f[x, y] // FullSimplify
  6. (*    True    *)
  7. f[y, x] == f[x, y] // FullSimplify
  8. (*    True    *)
Copy the Code
画图
  1. Plot3D[f[x, y],
  2. {x, -π/2, π/2}, {y, -π/2, π/2},
  3. PlotRange -> All,
  4. Exclusions -> None,
  5. PlotLegends -> Automatic,
  6. PlotPoints -> 100,
  7. MaxRecursion -> 5,
  8. AxesLabel -> Automatic]
Copy the Code
rEVLq.png

  1. DensityPlot[f[x, y], {x, 0, π/2}, {y, 0, π/2}, PlotRange -> All, Exclusions -> None]
Copy the Code
DhSQk.png

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2023-4-3 22:17
咋全部都 2x 或 2y,这系数 2 不是明显多余嘛,下面直接省去了喔。

记原式为 `m`,则有 `m\leqslant1-\cos x` 且 `m\leqslant1+\cos x`,因此有 `m\leqslant1-\abs{\cos x}`,同理有 `m\leqslant1-\abs{\sin x}`,显然 `m` 非负,所以可以两式相乘得
\begin{align*}
m^2&\leqslant(1-\abs{\sin x})(1-\abs{\cos x})\\
&=1-\abs{\sin x}-\abs{\cos x}+\abs{\sin x\cos x}\\
&=1-\sqrt{1+2t}+t,
\end{align*}
其中 `t=\abs{\sin x\cos x}\in[0,1/2]`,易知上式关于 `t` 递增,所以
\[1-\sqrt{1+2t}+t\leqslant\frac32-\sqrt2\riff m\leqslant\sqrt{\frac32-\sqrt2}=1-\frac1{\sqrt2},\]
最后再取一例子说明 `m` 能取到上式的右边,就是 `x=45\du`, `y=135\du`。

(也幸亏没有 `1\pm\sin(x-y)` 什么的,不然就取不到了)

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-4-3 22:24
将三角函数换为多项式:
  1. Maximize[{Min[1, 1 - cx, 1 + cx, 1 - cx*cy - sx*sy, 1 + cx*cy + sx*sy,
  2. 1 - cy, 1 + cy, 1 - sx, 1 + sx, 1 - sy, 1 + sy],
  3. sx^2 + cx^2 == 1 && sy^2 + cy^2 == 1}, {sx, cx, sy, cy}]
Copy the Code
{1 - 1/Sqrt[2], {sx -> -(1/Sqrt[2]), cx -> 1/Sqrt[2], sy -> -(1/Sqrt[2]), cy -> -(1/Sqrt[2])}}

Mobile version|Discuz Math Forum

2025-5-31 11:25 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit