Forgot password
 Register account
View 294|Reply 4

[不等式] 简单的实数4元最小值

[Copy link]

16

Threads

18

Posts

0

Reputation

Show all posts

Canhuang posted 2024-2-23 14:34 |Read mode
$a,b,c,d$是实数, $2a-\sqrt3b+6=0$, $\sqrt{12-3c^2}=2d$, 求 $(a-c)^2+(b-d)^2$ 的最小值.
有何代数解法?

6

Threads

245

Posts

6

Reputation

Show all posts

睡神 posted 2024-2-23 14:57 from mobile
解几算代数吗?纯不等式?或者配方这些?
除了不懂,就是装懂

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2024-2-23 15:11
类似题:
forum.php?mod=viewthread&tid=2379
以及《撸题集》P.670 题目 5.1.73

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2024-2-23 15:32
照搬链接里的方法:

由条件及柯西有
\begin{align*}
(a-c)^2+(b-d)^2&=(a-c)^2+\left(\frac{2a+6}{\sqrt3}-\frac{\sqrt{12-3c^2}}2\right)^2\\
&=\frac37\left(\left(-\frac2{\sqrt3}\right)^2+1\right)\left((a-c)^2+\left(\frac{2a+6}{\sqrt3}-\frac{\sqrt{12-3c^2}}2\right)^2\right)\\
&\geqslant\frac37\left(-\frac2{\sqrt3}(a-c)+\frac{2a+6}{\sqrt3}-\frac{\sqrt{12-3c^2}}2\right)^2\\
&=\frac1{28}\bigl(12+4c-3\sqrt{4-c^2}\bigr)^2,
\end{align*}
由均值有
\begin{align*}
12+4c-3\sqrt{4-c^2}&=12+4c-\sqrt{(2-c)(18+9c)}\\
&\geqslant12+4c-\frac{2-c+18+9c}2\\
&=2,
\end{align*}
所以
\[(a-c)^2+(b-d)^2\geqslant\frac17,\]
取等略。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2024-2-23 16:46
上面写得不够好看,重写一下:
由条件及柯西有
\begin{align*}
(a-c)^2+(b-d)^2&=\frac17\bigl((-2)^2+3\bigr)\bigl((a-c)^2+(b-d)^2\bigr)\\
&\geqslant\frac17\bigl(-2(a-c)+\sqrt3(b-d)\bigr)^2\\
&=\frac17\bigl(6+2c-\sqrt3d\bigr)^2,
\end{align*}
由条件有 `3c^2+4d^2=12`,再由柯西有
\[\bigl(3c^2+4(-d)^2\bigr)\left(\frac43+\frac34\right)\geqslant\bigl(2c-\sqrt3d\bigr)^2,\]
得到 `\bigl|2c-\sqrt3d\bigr|\leqslant5`,因此 `6+2c-\sqrt3d\geqslant1`,所以
\[(a-c)^2+(b-d)^2\geqslant\frac17,\]
取等略。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:24 GMT+8

Powered by Discuz!

Processed in 0.017813 seconds, 47 queries