Forgot password?
 Register account
View 3347|Reply 14

[不等式] 一道不等式压轴题

[Copy link]

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

aishuxue Posted 2015-5-4 15:34 |Read mode
Last edited by hbghlyj 2025-3-21 23:49已知正实数 $x, y$ 满足 $x+\frac{2}{x}+3 y+\frac{4}{y}=10$ ,则 $x y$ 的取值范围为

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-5-4 16:16
对于正数 $a$, $b$, $c$, $d$,由均值不等式有
\[10=a\cdot\frac xa+b\cdot\frac2{bx}+c\cdot\frac{3y}c+d\cdot\frac4{dy}
\geqslant (a+b+c+d)\left( \left( \frac xa \right)^a\left( \frac2{bx} \right)^b\left( \frac{3y}c \right)^c\left( \frac4{dy} \right)^d \right)^{1/(a+b+c+d)}.\]

令 $a=1$, $b=2$, $c=3$, $d=4$,代入化简得
\[10\geqslant 10\left( \frac1{xy} \right)^{1/10}\riff xy\geqslant 1,\]
当 $x=y=1$ 时取等;

令 $a=2$, $b=1$, $c=4$, $d=3$,代入化简得
\[10\geqslant 10\left( \frac38xy \right)^{1/10}\riff xy\leqslant \frac83,\]
当 $x=2$, $y=4/3$ 时取等。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-5-4 16:48
估计也会被问起 $a$, $b$, $c$, $d$ 怎么得到的,这里还是顺便补充一下吧,反正也就把草稿改改就是了。

首先不妨令 $a=1$,为了使均值后 $x$, $y$ 次数相同,以及能取等,应有
\[
\led
& 1-b=c-d, \\
& x=\frac2{bx}=\frac{3y}c=\frac4{dy}, \\
& x+\frac2x+3y+\frac4y=10,
\endled
\]
消 $b$, $c$, $d$ 得
\[
\led
& 1-\frac2{x^2}=\frac{3y}x-\frac4{xy}, \\
& x+\frac2x+3y+\frac4y=10,
\endled
\]
亦即
\[
\led
x-\frac2x-3y+\frac4y&=0, \\
x+\frac2x+3y+\frac4y&=10,
\endled
\]
所以
\[x+\frac4y=\frac2x+3y=5,\]
这样就可以解出 $x$, $y$,从而得 $b$, $c$, $d$,如果它们有分母就同乘公分母变成整数好算点。解的时候也非常好解,因为显然能看到 $x=y=1$ 是一个解。

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

 Author| aishuxue Posted 2015-5-4 17:15
能有学生易懂的方法吗?

29

Threads

70

Posts

647

Credits

Credits
647

Show all posts

转化与化归 Posted 2015-5-4 17:53
Last edited by hbghlyj 2025-4-6 23:25回复 1# aishuxue \[
\begin{aligned}
&\begin{aligned}
& \text { 设 } t=x y \text {, 则 } y=\frac{t}{x}, \\
& x+\frac{2}{x}+3 y+\frac{4}{y}=10 \Rightarrow \exists x>0,\left(1+\frac{4}{t}\right) x+(2+3 t) \frac{1}{x}=10, \\
& \Rightarrow 2 \sqrt{\left(1+\frac{4}{t}\right)(2+3 t)} \leq 10 \Rightarrow 1 \leq t \leq \frac{8}{3}
\end{aligned}\\
&\text { 当 } t=1 \text { 时,} x=y=1 \text { ,当 } t=\frac{8}{3} \text { 时,} x=2, y=\frac{4}{3} \text { ,}
\end{aligned}
\]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-5-4 18:00
回复 5# 转化与化归

nice

0

Threads

3

Posts

18

Credits

Credits
18

Show all posts

椰乡故有情 Posted 2015-5-4 19:46

    受教

0

Threads

3

Posts

18

Credits

Credits
18

Show all posts

椰乡故有情 Posted 2015-5-4 19:50
回复 2# kuing

a, b, c, d的值是不是任意取的?

53

Threads

308

Posts

2026

Credits

Credits
2026

Show all posts

踏歌而来 Posted 2015-5-4 20:06
路过,学习。

29

Threads

70

Posts

647

Credits

Credits
647

Show all posts

转化与化归 Posted 2015-5-4 20:26
Last edited by hbghlyj 2025-4-6 23:26回复 6# kuing \[
10=x+\frac{2}{x}+3 y+\frac{4}{y} \geq 2 \sqrt{\left(x+\frac{4}{y}\right)\left(\frac{2}{x}+3 y\right)}=2 \sqrt{14+3 x y+\frac{8}{x y}} \Rightarrow 1 \leq x y \leq \frac{8}{3} \text {(等号可以同时取到)}
\]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2015-5-4 20:40
回复 10# 转化与化归

这跟5#的换元法应该是本质相同的

53

Threads

308

Posts

2026

Credits

Credits
2026

Show all posts

踏歌而来 Posted 2015-5-5 07:11
回复 10# 转化与化归


    奇妙!

67

Threads

407

Posts

3537

Credits

Credits
3537

Show all posts

Tesla35 Posted 2018-8-10 11:57
若$x>0,y>0$,且$x+\frac{1}{x}+y+\frac{4}{y}\leqslant 9$,则$\frac{1}{x}+\frac{4}{y}$的最大值为

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-8-10 13:27
若$x>0,y>0$,且$x+\frac{1}{x}+y+\frac{4}{y}\leqslant 9$,则$\frac{1}{x}+\frac{4}{y}$的最大值为
Tesla35 发表于 2018-8-10 11:57
这个简单
\[9\geqslant x+\frac1x+y+\frac4y=\frac1{\frac1x}+\frac4{\frac4y}+\frac1x+\frac4y\geqslant\frac {(1+2)^2}{\frac1x+\frac4y}+\frac1x+\frac4y,\]
解得
\[\frac32\bigl(3-\sqrt5\bigr)\leqslant\frac1x+\frac4y\leqslant\frac32\bigl(3+\sqrt5\bigr),\]
当 `2x=y=3+\sqrt5` 时左边取等,当 `2x=y=3-\sqrt5` 时右边取等,所以上式两边就是原式的最大最小值。

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2018-8-10 13:57
两个变量不等式放缩相对安全。

Mobile version|Discuz Math Forum

2025-5-31 10:41 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit