Forgot password
 Register account
View 2756|Reply 2

[几何] 一个向量题1

[Copy link]
转化与化归 posted 2013-6-27 21:42 |Read mode
Last edited by hbghlyj 2025-3-21 22:07在边长为 1 的正六边形 ABCDEF 中,记以 A 为起点,其余顶点为终点的向量分别为 $\overrightarrow{a_1}, \overrightarrow{a_2}, \overrightarrow{a_3}, \overrightarrow{a_4}, \overrightarrow{a_5}$ ;以 D 为起点,其余顶点为终点的向量分别为 $\overrightarrow{d_1}, \overrightarrow{d_2}, \overrightarrow{d_3}, \overrightarrow{d_4}, \overrightarrow{d_5}$ .若 $m, M$ 分别为 $\left(\overrightarrow{a_i}+\overrightarrow{a_j}+\overrightarrow{a_k}\right) \cdot\left(\overrightarrow{d_r}+\overrightarrow{d_s}+\overrightarrow{d_t}\right)$ 的最小值,最大值,其中 $\{i, j, k\} \subseteq\{1,2,3,4,5\},\{r, s, t\} \subseteq\{1,2,3,4,5\}$则 $m, M$ 满足( )
(A)$m=0, M>0$
(B)$m<0, M>0$
(C)$m<0, M=0$
(D)$m<0, M<0$

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-6-29 15:02
又是想好想,写不易写的题……
夹角最小的情形是 $\vv{AB}+\vv{AC}+\vv{AD}$ 和 $\vv{DC}+\vv{DB}+\vv{DA}$ 那时,画个图易知是钝角,所以任何情况都是钝角,即数量积始终小于零,故D。
original poster 转化与化归 posted 2013-6-29 21:22
确实是这样!答案易知,书写困难。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 10:54 GMT+8

Powered by Discuz!

Processed in 0.016905 seconds, 44 queries