Forgot password?
 Register account
View 445|Reply 2

[函数] 原来本的二元函数最大值原来并不是很麻烦相对柯西不等式

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-10-21 23:01 |Read mode
求$\frac {x+y}{(4x^2+3)(4y^2+3)}$的最大值.  




题源 及 “感叹” 来自知乎提问的标签



令 $$f(x,y)=\frac {x+y}{(4x^2+3)(4y^2+3)},x>0,y>0.$$

$$\left\{\begin{aligned} f_x=\frac{(4x^2+3)-(x+y)\cdot 8x }{(4x^2+3)^2(4y^2+3)}&=0,\\ f_y=\frac{(4y^2+3)-(x+y)\cdot 8y }{(4x^2+3)(4y^2+3)^2}&=0 \end{aligned}\right.$$

得 $f$ 的稳定点 $P_0\left(\frac 12,\frac 12\right)$,由于

\begin{align*} f_{xx}&=\frac{-8(x+y)(4x^2+3)-(-4x^2-8xy+3)\cdot 16x}{(4x^2+3)(4y^2+3)^3},\\[1em] f_{xy}&=\frac{-8x(4y^2+3)-(-4x^2-8xy+3)\cdot 8y}{(4x^2+3)^2(4y^2+3)^2},\\[1em] f_{yy}&=\frac{-8(x+y)(4y^2+3)-(-4x^2-8xy+3)\cdot 16y}{(4x^2+3)^3(4y^2+3)} \end{align*}

\begin{gather*} f_{xx}(P_0)=-\frac 18<0,\quad f_{xy}(P_0)=-\frac 1{16},\quad f_{yy}(P_0)=-\frac 18\\[1em] \left(f_{xx}f_{yy}-f_{xy}^2\right)(P_0)>0. \end{gather*}

从而 $f_{\max}=\frac 1{16}.$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-10-22 00:12

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-10-22 01:24
Last edited by isee 2021-10-23 09:57回复 2# kuing


顶楼就是链接里解法中间一部分哪

===
现学现卖,正好知乎上有人评论(这个方向)

记 $a+b=t(>0),$ 注意这里是 $\color{blue}{3-4ab>0}$ 的情形:

\begin{align*} \frac {a+b}{(4a^2+3)(4b^2+3)}&=\frac {a+b}{12(a+b)^2+(3-\color{red}{4ab})^2}\\[1em] &\leqslant \frac {a+b}{12(a+b)^2+(3-\color{red}{(a+b)^2})^2}\\[1em] &=\frac 1{t^3+6t+\frac 9t}\\[1em] &\leqslant \frac 1{16\sqrt [16]{t^3\cdot t^6 \cdot \left(\frac 1t\right)^9}}\\[1em] &=\frac 1{16}. \end{align*}

(

其次,当 $\color{blue}{3-4ab\leqslant 0}$ 时, $3\leqslant 4ab\leqslant (a+b)^2$ ,依旧只考虑 $a+b>0$ :

\begin{align*} \frac {a+b}{(4a^2+3)(4b^2+3)}&=\frac {a+b}{12(a+b)^2+(3-\color{red}{4ab})^2}\\[1em] &\leqslant \frac {a+b}{12(a+b)^2+0}\\[1em]  &=\frac 1{12{a+b}}\\[1em]  &\leqslant \frac 1{12\sqrt 3}\\[1em]  &<\frac 1{16} . \end{align*}

)

Mobile version|Discuz Math Forum

2025-5-31 10:33 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit