|
求$\frac {x+y}{(4x^2+3)(4y^2+3)}$的最大值.
题源 及 “感叹” 来自知乎提问的标签
令 $$f(x,y)=\frac {x+y}{(4x^2+3)(4y^2+3)},x>0,y>0.$$
$$\left\{\begin{aligned} f_x=\frac{(4x^2+3)-(x+y)\cdot 8x }{(4x^2+3)^2(4y^2+3)}&=0,\\ f_y=\frac{(4y^2+3)-(x+y)\cdot 8y }{(4x^2+3)(4y^2+3)^2}&=0 \end{aligned}\right.$$
得 $f$ 的稳定点 $P_0\left(\frac 12,\frac 12\right)$,由于
\begin{align*} f_{xx}&=\frac{-8(x+y)(4x^2+3)-(-4x^2-8xy+3)\cdot 16x}{(4x^2+3)(4y^2+3)^3},\\[1em] f_{xy}&=\frac{-8x(4y^2+3)-(-4x^2-8xy+3)\cdot 8y}{(4x^2+3)^2(4y^2+3)^2},\\[1em] f_{yy}&=\frac{-8(x+y)(4y^2+3)-(-4x^2-8xy+3)\cdot 16y}{(4x^2+3)^3(4y^2+3)} \end{align*}
\begin{gather*} f_{xx}(P_0)=-\frac 18<0,\quad f_{xy}(P_0)=-\frac 1{16},\quad f_{yy}(P_0)=-\frac 18\\[1em] \left(f_{xx}f_{yy}-f_{xy}^2\right)(P_0)>0. \end{gather*}
从而 $f_{\max}=\frac 1{16}.$ |
|