Forgot password?
 Register account
View 273|Reply 2

[不等式] 二元最值 求一个优雅的解法

[Copy link]

107

Threads

225

Posts

2905

Credits

Credits
2905

Show all posts

facebooker Posted 2022-8-19 20:21 |Read mode
Last edited by kuing 2024-1-21 18:10已知$a,b\in R,\dfrac{\left(1-a\right)\left(1-b\right)\left(1-ab\right)}{\left(1+a^{2}\right)\left(1+b^{2}\right)}$的最大最小值为?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-8-19 21:52
记原式为 `f`,作置换 `(a,b)\to(\tan x,\tan y)`,则
\[f=(\cos x-\sin x)(\cos y-\sin y)\cos(x+y),\]
再作置换 `(x,y)\to(45\du-x,45\du-y)`,则
\[f=2\sin x\sin y\sin(x+y),\]
如果 `x`, `y` 同时变为其相反数,则 `f` 也变为其相反数,所以 `f` 的最大最小值必定互为相反数。积化和差得
\[f=\sin x\cdot\bigl(\cos x-\cos(x+2y)\bigr),\]
于是
\begin{align*}
f^2&=(1-\cos^2x)\bigl(\cos x-\cos(x+2y)\bigr)^2\\
&\leqslant(1-\cos^2x)(\abs{\cos x}+1)^2\\
&=\frac13(3-3t)(1+t)(1+t)(1+t)\quad(t=\abs{\cos x})\\
&\leqslant\frac13\left( {\frac64} \right)^4=\frac{27}{16},
\end{align*}
等号显然是能取的,所以 `f` 的最大最小值就是 `\pm3\sqrt3/4`。

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2022-8-20 10:55
初看类似,细看不同,不过可以看成姊妹题:mp.weixin.qq.com/s?__biz=MzIxMDYxMDMxOQ==& … 66&lang=zh_CN#rd
妙不可言,不明其妙,不着一字,各释其妙!

Mobile version|Discuz Math Forum

2025-5-31 11:00 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit