Forgot password?
 Register account
View 308|Reply 4

[不等式] 来自人教群:二元多个根式求最大值(1#太麻烦,直接看2#)

[Copy link]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-9-6 15:39 |Read mode
鄂B爱好者羽林(3086*****) 2022/9/6 8:11:22
已知 `m`, `n\inR^+`, `m+n=9`,求 `\bigl( \sqrt m+\sqrt{m+16} \bigr)\bigl( \sqrt n+\sqrt{n+7} \bigr)` 的最大值。
待定正数 `a`, `b`,由 CS 有
\[
\sqrt m+\sqrt{m+16}\leqslant\sqrt{(am+m+16)\left( \frac1a+1 \right)}=\frac{a+1}{\sqrt a}\sqrt{m+\frac{16}{a+1}},
\]
同理
\[\sqrt n+\sqrt{n+7}\leqslant\frac{b+1}{\sqrt b}\sqrt{n+\frac7{b+1}},\]
相乘再均值
\begin{align*}
\bigl( \sqrt m+\sqrt{m+16} \bigr)\bigl( \sqrt n+\sqrt{n+7} \bigr)&\leqslant\frac{(a+1)(b+1)}{\sqrt{ab}}\sqrt{m+\frac{16}{a+1}}\sqrt{n+\frac7{b+1}}\\
&\leqslant\frac{(a+1)(b+1)}{2\sqrt{ab}}\left( 9+\frac{16}{a+1}+\frac7{b+1} \right),
\end{align*}
取等条件为
\[\led
ma^2&=m+16,\\
nb^2&=n+7,\\
m+\frac{16}{a+1}&=n+\frac7{b+1},\\
m+n&=9,
\endled\]
消 `m`, `n` 化为
\[
\led
\frac{16}{a^2-1}+\frac{16}{a+1}&=\frac7{b^2-1}+\frac7{b+1},\\
\frac{16}{a^2-1}+\frac7{b^2-1}&=9,
\endled
\]
前式化为
\[\frac{16a}{a^2-1}=\frac{7b}{b^2-1} \iff a^2-1=\frac{16a(b^2-1)}{7b},\]
代入后式得
\[\frac{7b}{a(b^2-1)}+\frac7{b^2-1}=9 \iff a=\frac{7b}{9b^2-16},\]
所以
\[\left( \frac{7b}{9b^2-16} \right)^2-1=\frac{16(b^2-1)}{9b^2-16},\]
去分母化简得
\[(b^2-1)(225b^2-512)=0\riff b=\frac{16\sqrt2}{15}\riff a=\frac{5\sqrt2}3,\]
代回上面,结果就是
\[\bigl( \sqrt m+\sqrt{m+16} \bigr)\bigl( \sqrt n+\sqrt{n+7} \bigr)\leqslant20+12\sqrt2.\]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

 Author| kuing Posted 2022-9-6 23:48
O(∩_∩)O哈!想到一个简单的方法,玩对偶式:

设 `x=\bigl( \sqrt m+\sqrt{m+16} \bigr)\bigl( \sqrt n+\sqrt{n+7} \bigr)`,则
\[\frac1x=\frac{\sqrt{m+16}-\sqrt m}{16}\cdot\frac{\sqrt{n+7}-\sqrt n}7,\]
于是
\begin{align*}
x+\frac{16\cdot7}x&=\bigl( \sqrt m+\sqrt{m+16} \bigr)\bigl( \sqrt n+\sqrt{n+7} \bigr)+\bigl( \sqrt{m+16}-\sqrt m \bigr)\bigl( \sqrt{n+7}-\sqrt n \bigr)\\
&=2\sqrt{m+16}\sqrt{n+7}+2\sqrt n\sqrt m\\
&\leqslant2\sqrt{(m+16+n)(n+7+m)}\\
&=40,
\end{align*}

\[x+\frac{112}x\leqslant40\iff20-12\sqrt2\leqslant x\leqslant20+12\sqrt2,\]
取等条件为 `(m+16)/n=(n+7)/m` 与 `m+n=9` 解得 `m=144/41`, `n=225/41`,此时为上式右边取等,而左边显然取不了(最小值会在端点取,可以证明上凸,目测是 `8\sqrt7`)。

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2022-9-7 09:18
kuing 发表于 2022-9-6 23:48
O(∩_∩)O哈!想到一个简单的方法,玩对偶式:

设 `x=\bigl( \sqrt m+\sqrt{m+16} \bigr)\bigl( \sqrt n+\ ...
此题对偶漂亮了。哈哈。BTW:现在新版确实智能很多了,

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2022-9-7 09:38 From mobile phone
题目引用,在触屏版几乎看不见

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2022-9-7 11:00
敬畏数学 发表于 2022-9-7 09:18
此题对偶漂亮了。哈哈。BTW:现在新版确实智能很多了,
此题是否可以换元,把那两个根式全部换掉。高手请教。。。

Mobile version|Discuz Math Forum

2025-5-31 11:17 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit