Forgot password?
 Create new account
View 252|Reply 3

[函数] 三角函数、双曲函数的推广

[Copy link]

3148

Threads

8489

Posts

610K

Credits

Credits
66148
QQ

Show all posts

hbghlyj Posted at 2022-11-3 00:25:33 |Read mode
Last edited by hbghlyj at 2023-2-6 17:15:00相关帖子
$p$ 是常数, 求出所有函数$c(x),s(x)$满足
\begin{align}
c(x + y) &= c(x) c(y) + p s(x) s(y)\\
s(x + y) &= s(x) c(y) + c(x) s(y)\\
c(-x) &= c(x)\\
s(-x) &= -s(x)\\
c(0)&=1\\
s(0)&=0
\end{align}
如何把三角恒等式(不含具体数值的,比如$\cos\fracπ3=\frac12$我们不考虑.) 改写成$c(x),s(x)$满足的恒等式?
只涉及$\cos$的恒等式似乎把$\cos(x)$换为$c(x)$后就能成立:
\begin{align}
c(2x)&=2c(x)^2-1\\
c(3x)&=4c(x)^3-3c(x)\\
\vdots&\nonumber
\end{align}
(7)的证明
由(1)代入$y=-x$,使用(3)(4)(5)得\begin{equation}1=c(x)^2-ps(x)^2\end{equation}
由(1)代入$y=x$,使用(9)得\begin{align*}
c(2x)&=c(x)^2+ps(x)^2\\
&=c(x)^2+c(x)^2-1\\
&=2c(x)^2-1
\end{align*}

(8)的证明
由(2)代入$y=x$得\begin{equation}s(2x)=2s(x)c(x)\end{equation}
由(1)代入$y=2x$,使用(7)(10),再使用(9)得\begin{align*}
c(3x)&=c(x)c(2x)+ps(x)s(2x)\\
&=c(x)[2c(x)^2-1]+ps(x)[2s(x)c(x)]\\
&=2c(x)^3-c(x)+2c(x)[ps(x)^2]\\
&=2c(x)^3-c(x)+2c(x)[c(x)^2-1]\\
&=4c(x)^3-3c(x)
\end{align*}

84

Threads

436

Posts

5432

Credits

Credits
5432

Show all posts

tommywong Posted at 2022-11-5 10:23:55
切比雪夫多項式
zh.wikipedia.org/wiki/%E5%88%87%E6%AF%94%E9%9 … 9A%E9%A1%B9%E5%BC%8F

第一類切比雪夫多項式
$c(x+y)=c(x)c(y)+ps(x)s(y)$
$c(x-y)=c(x)c(y)-ps(x)s(y)$
$c(x+y)+c(x-y)=2c(x)c(y)$
$y=nx,~c((n+1)x)=2c(x)c(nx)-c((n-1)x)$
$T_n(c(x))=c(nx)$
$\begin{cases}T_0(c(x))=c(0)=1\\
T_1(c(x))=c(x)\\
T_{n+1}(c(x))=2c(x)T_n(c(x))-T_{n-1}(c(x))\end{cases}$

第二類切比雪夫多項式
$s(x+y)=s(x)c(y)+c(x)s(y)$
$s(x-y)=s(x)c(y)-c(x)s(y)$
$s(x+y)-s(x-y)=2c(x)s(y)$
$y=nx,~s((n+1)x)=2c(x)s(nx)-s((n-1)x)$
$U_n(c(x))=\dfrac{s(n+1)x}{s(x)}$
$\begin{cases}U_0(c(x))=\dfrac{s(x)}{s(x)}=1\\
U_1(c(x))=\dfrac{s(2x)}{s(x)}=\dfrac{2c(x)s(x)}{s(x)}=2c(x)\\
U_{n+1}(c(x))=\dfrac{s(n+2)x}{s(x)}
=\dfrac{2c(x)s((n+1)x)-s(nx)}{s(x)}
=2c(x)U_n(c(x))-U_{n-1}(c(x))\end{cases}$
现充已死,エロ当立。
维基用户页:https://zh.wikipedia.org/wiki/User:Tttfffkkk
Notable algebra methods:https://artofproblemsolving.com/community/c728438
《方幂和及其推广和式》 数学学习与研究2016.

3148

Threads

8489

Posts

610K

Credits

Credits
66148
QQ

Show all posts

 Author| hbghlyj Posted at 2022-11-20 08:10:38
  1. RSolve[{c[2 x]==-1+2 c[x]^2},c[x],x]
Copy the Code

输出{{c[x]->Cos[x c1]}}

3148

Threads

8489

Posts

610K

Credits

Credits
66148
QQ

Show all posts

 Author| hbghlyj Posted at 2023-2-7 00:14:33
hbghlyj 发表于 2022-11-20 01:10
输出{{c[x]->Cos[x c1]}}
令$t(x)=\frac{s(x)}{c(x)}$
由$\frac{s(x + y)}{c(x + y)}=\frac{s(x) c(y) + c(x) s(y)}{c(x) c(y) + p s(x) s(y)}$得$$t(x+y)=\frac{t(x)+t(y)}{1+p\,t(x)t(y)}$$
然后仿照此帖可解.

手机版Mobile version|Leisure Math Forum

2025-4-20 11:46 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list