Forgot password?
 Create new account
View 3600|Reply 18

[函数] 请教一个题目 $x+y=5,\min(3\sqrt{2x^2+1}+2\sqrt{9y^2+40})$

[Copy link]

14

Threads

39

Posts

299

Credits

Credits
299

Show all posts

joatbmon Posted at 2017-2-16 15:41:21 |Read mode
来自q群的,别人发的,有人说x=3取到,但是没发具体做法,我不会,请教
$x+y=5,\min(3\sqrt{2x^2+1}+2\sqrt{9y^2+40})$

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2017-2-16 16:22:42
既然都有人提示了取等条件,那还想什么,直接求切线呗
\begin{align*}
3\sqrt{2x^2+1}&\geqslant \frac{18}{\sqrt{19}}(x-3)+3 \sqrt{19},\\
2\sqrt{9y^2+40}&\geqslant \frac{18}{\sqrt{19}}(y-2)+4 \sqrt{19}.
\end{align*}

PS、写公式直接打代码即可,不需要点击工具栏上面那个“代码”按钮。

14

Threads

39

Posts

299

Credits

Credits
299

Show all posts

 Author| joatbmon Posted at 2017-2-16 16:47:22
多谢多谢

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2017-2-20 12:30:49
回复 3# joatbmon

你为什么不追问取等怎么来嘀?

48

Threads

77

Posts

778

Credits

Credits
778

Show all posts

longzaifei Posted at 2017-2-20 14:21:12
回复 4# kuing
可以待定系数法得到

14

Threads

39

Posts

299

Credits

Credits
299

Show all posts

 Author| joatbmon Posted at 2017-2-20 17:21:06
回复 4# kuing


    怎么来的?我感觉是不是有几何意义?

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2017-2-25 23:29:35
回复 6# joatbmon
光学折射

14

Threads

39

Posts

299

Credits

Credits
299

Show all posts

 Author| joatbmon Posted at 2017-3-3 16:42:09
只会反射,折射咋做,能具体点么

276

Threads

691

Posts

6120

Credits

Credits
6120

Show all posts

力工 Posted at 2017-3-3 19:22:00
Last edited by 力工 at 2017-3-6 18:41:00回复 1# joatbmon
结合待定系数法用$\dfrac{a^2+b^2}{2}\geqslant (\dfrac{a+b}{2})^2$整理为$\lambda (a+b)+c$的形式即可。还是按kuing说的做好。
果然是多了点},发的时候找了半天没找出症结。

14

Threads

39

Posts

299

Credits

Credits
299

Show all posts

 Author| joatbmon Posted at 2017-3-6 14:55:45
回复 9# 力工
geq是大于等于,slant是啥看不懂。第一次听说折射的做法,很好奇想要了解下,学新技能

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2017-3-6 17:42:17
回复 10# joatbmon

\geq 是 $\geq$,\geqslant 是 $\geqslant$
他那个代码之所以出不来公式是因为后面多了一个 } 导致出错,删除了那个 } 之后显示为 $\dfrac{a^2+b^2}{2}\geqslant (\dfrac{a+b}{2})^2$

14

Threads

39

Posts

299

Credits

Credits
299

Show all posts

 Author| joatbmon Posted at 2017-3-6 21:13:35
还是不会,如何待定系数?用n元的均值不等式?从来没见过,不会。能否赐教。

14

Threads

39

Posts

299

Credits

Credits
299

Show all posts

 Author| joatbmon Posted at 2017-3-8 11:02:34
我还是不会用,我只见过xyz三个字母的,把y拆成两半配xz,这个怎么拆系数,想不出来,麻烦哪位赐教下

14

Threads

39

Posts

299

Credits

Credits
299

Show all posts

 Author| joatbmon Posted at 2017-3-8 12:06:14
7楼说的折射我百度了,做了下后面要解四次方程,作为通解不适合给高中考试。现在还有待定系数没搞明白

2

Threads

16

Posts

95

Credits

Credits
95

Show all posts

陈习晖 Posted at 2017-5-10 18:17:28
拉格朗日乘法貌似可以

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2017-5-10 18:35:59
因为求导发现遇四次方程,根据难度守恒定律,无论用什么方法,终归都会遇到四次方程,故此:
(1)如果方程无简单解,则什么方法都没用;
(2)如果有简单解,则各种方法都将可行,如果非要比个优劣,那就只能比较哪个更便于你目测出那个简单解,哪个计算更最少,哪个写起来更简洁,甚至哪个逼格更高,等等这些非本质的东西。然而,只要数据稍微一变,所有方法都得跪。

276

Threads

691

Posts

6120

Credits

Credits
6120

Show all posts

力工 Posted at 2017-5-10 19:32:20
回复 16# kuing

色k,如果题目改为求:$x,y\geqslant 0$,求$max{3\sqrt{1+2x^2}+2\sqrt{9y^2+40}}$.有比弦线法更好的选择吗?

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2017-5-10 19:49:47
回复 17# 力工

最大值那还用想吗,下凸的,考虑端点不就好了
另外你打漏了约束条件
另另外 max 的代码是 \max, { } 是 \{ \}

276

Threads

691

Posts

6120

Credits

Credits
6120

Show all posts

力工 Posted at 2017-5-11 18:59:52
回复 18# kuing
谢谢!记住 了。
max 的代码是 \max, { } 是 \{ \}

手机版Mobile version|Leisure Math Forum

2025-4-21 14:13 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list