Forgot password?
 Create new account
View 200|Reply 3

[不等式] 正数a,b,满足$a+b=a^3b^2$

[Copy link]

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2022-5-16 14:26:17 |Read mode
正数a,b,满足$a+b=a^3b^2$,则$\frac{1}{a}+\frac{2}{b}$的最小值.

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2022-5-16 15:40:49
和这题差不多:zhihu.com/question/483946898
\[\left( \frac1a+\frac2b \right)^4=\left( \frac{2a+b}{ab} \right)^4\frac{a^3b^2}{a+b}=\frac{(2a+b)^4}{ab^2(a+b)},\]
数据也是凑得比较好的,可以这样
\[(2a+b)^4=(4a(a+b)+b^2)^2\geqslant4\cdot4a(a+b)\cdot b^2,\]
从而原式 `\geqslant2`。

Comment

明白了  Posted at 2022-5-16 15:54

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2022-5-16 19:09:09
kuing 发表于 2022-5-16 15:40
和这题差不多:https://www.zhihu.com/question/483946898
\[\left( \frac1a+\frac2b \right)^4=\left( \fr ...
链接中的题我不专门收论坛了 kuing.cjhb.site/forum.php?mod=viewthread&tid=8219&page=1
isee=freeMaths@知乎

手机版Mobile version|Leisure Math Forum

2025-4-21 01:26 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list