Forgot password?
 Register account
View 607|Reply 4

[不等式] 正实数满足$x+\frac 2x+y+\frac 6y=10$求$5/y-2/x$最大值

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-9-18 10:27 |Read mode
Last edited by isee 2021-9-18 10:36正实数$x,y$满足$x+\frac 2x+y+\frac 6y=10$求$\frac 5y-\frac 2x$最大值__4__

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-9-18 10:34
也是浙江的(开学考,高三),《浙江省嘉兴市2022届高三上学期基础测试数学试题》。

估计也能如反代回,不过,计算量有些大,直接凑呢?

\begin{align*}
\frac 5y-\frac 2x&=10-x-\frac 2x-y-\frac 6y+\frac 5y-\frac 2x\\
&=10-x-\frac 4x-y-\frac 1y\\
&\leqslant 10+(-4)+(-2)\\
&=4
\end{align*}

哈哈,这个+0,怎么像拉格朗日数乘法的简化呢(或者说是“反”写)

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-9-18 10:49
Last edited by isee 2021-9-18 11:03升级版:forum.php?mod=viewthread&tid=4987

链接里的13#,$x^2+y^2+\frac{1}{x}+\frac{1}{y}=\frac{17}{4},$求$\frac{15}{x}-\frac{3}{4y}$最小值,如此泡制
\begin{align*}
\frac{15}{x}-\frac{3}{4y}&=x^2+y^2+\frac{1}{x}+\dfrac{1}{y}-\frac{17}{4}+\frac{15}{x}-\frac{3}{4y}\\
&=x^2+y^2+\frac{16}{x}+\dfrac{1}{4y}-\frac{17}{4}\\
&=\left(x^2+\frac{16}{x}\right)+\left(y^2+\dfrac{1}{4y}\right)-\frac{17}{4}\\
&\geqslant 12+\frac 34-\frac{17}{4}\\
&\cdots
\end{align*}

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2021-9-18 13:15
一样的方法,设目标为P,然后进行加减就可以基本不等式消元,几乎没有要求的不等式。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-11-20 23:11
源自知乎提问,估计提问者 沙原** 是浙江的,好些提问有些麻烦的~

题:已知两正实数满足 $a+b+\frac 2a+\frac 5b=8$,则 $\frac 2a-\frac 4b$ 的最小值为____.

\begin{align*} \frac 2a-\frac 4b&=\frac 2a-\frac 4b+\color{blue}{a+b+\frac 2a+\frac 5b-8}\\[1em] &=\left(\frac 4a+a\right)+\left(\frac 1b+b\right)-8\\[1em] &\geqslant 2\sqrt 4+2-8\\[1em] &=-2. \end{align*}

取“=”略.

Mobile version|Discuz Math Forum

2025-5-31 10:30 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit