Forgot password?
 Create new account
View 366|Reply 3

[不等式] 两正实数满足$xy(x+8y)=20$求$x+3y$最小值

[Copy link]

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2021-9-30 15:45:42 |Read mode
Last edited by isee at 2021-9-30 15:53:00两正实数 $x,y$ 满足 $xy(x+8y)=20$, 则$x+3y$ 最小值为_5_.

PS:这二元的,如果不想折腾,还真得上偏导,易操作



























最近各平台首页总是推荐不等式的,这么这是 B站我的首页中的.

刚开始就想到凑个齐次了结$$\frac {(x+3y)^3}{20}=\frac {(x+3y)^3}{x^2y+8xy^2},$$再令$x=ky$了事,不过,不想求导.


这个条件等式能看出$(2,1)$这一对,然后拖了一下视频,有了小提示(解法),于有$$1000=5x\cdot 10y \cdot(x+8y)\leqslant \left(\frac {5x+10y+x+8y}3\right)^3=(6x+18y)^3,$$从而$x+3y\geqslant 5$,取"$=$"时,$5x=10y=x+8y$,即$x=2,y=1$.

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2021-9-30 15:48:45
所以这类题都建议先蒙取等

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2021-9-30 15:49:54
首页推荐的事看来是大数据察觉你最近在入门不等式吧?

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

 Author| isee Posted at 2021-9-30 15:51:57
回复 3# kuing


是的是的,大数据是无私的共享的

手机版Mobile version|Leisure Math Forum

2025-4-21 14:24 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list