Forgot password?
 Register account
View 246|Reply 4

[不等式] 求ab的最大值

[Copy link]

413

Threads

1432

Posts

110K

Credits

Credits
11105

Show all posts

realnumber Posted 2022-5-18 12:46 |Read mode
已知:$\frac{1}{b(2a+b)}+\frac{2}{a(2b+a)}=1$,求ab的最大值.

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2022-5-18 14:32
这个化简得到
\[\frac{a^2+6ab+2b^2}{ab(2a+b)(a+2b)}=1\]
\[a^2+6ab-2a^3b+2b^2-5a^2b^2-2ab^3=0\]
令$ab=t$,得到
\[a^2(1-2t)+2b^2(1-t)+6t-5t^2=0\]
然后代入$a=\frac{t}{b}$,就有
\[\frac{t^2(1-2t)}{b^2}+2b^2(1-t)+6t-5t^2=0\]
\[2(1-t)b^4+(6t-5t^2)b^2+t^2(1-2t)=0\]
首先这玩意要有解,也就是
\[\Delta =t^2(9t^2-36t+28)\ge 0\]
得到
\[0\le t\le \frac{6-2\sqrt{2}}{3}, \mbox{或} t\ge \frac{6+2\sqrt{2}}{3}\]
然后要求两个解都是正的,也就是
\[\frac{5t^2-6t}{1-t}>0, \frac{t^2(1-2t)}{1-t}>0\]
要同时成立,即
\[t<0\mbox{或}1<t<\frac{6}{5}\]
合并得到
\[1<t\le \frac{6-2\sqrt{2}}{3}\]

Comment

鼓掌~~  Posted 2022-5-18 16:27

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2022-5-18 14:37
令 `b=ta`,有
\begin{align*}
ab&=\frac a{2a+b}+\frac{2b}{2b+a}=\frac1{2+t}+\frac{2t}{2t+1}\\
&=\frac1{2+t}-\frac1{2t+1}+1=\frac{t-1}{2t^2+5t+2}+1,
\end{align*}
要求最大值,显然只需考虑 `t>1` 的情况,继续变形
\begin{align*}
&=\frac{t-1}{2(t-1)^2+9(t-1)+9}+1\\
&=\frac1{2(t-1)+\frac9{t-1}+9}+1\leqslant\frac1{6\sqrt2+9}+1.
\end{align*}

Comment

鼓掌~~  Posted 2022-5-18 16:28

Mobile version|Discuz Math Forum

2025-6-4 21:24 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit